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Abstract
We discuss recent experiments on photoexcited charge carrier relaxation
dynamics in semiconducting nanotubes and nanoparticles within the framework
of the stochastic model. We conclude that the elementary excitations in these
nanosystems are excitons. Since the average number of excitons per nanosystem
is typically small and comparable to a fluctuation, the quantized character of the
number of excitons in nanosystems turns out to be essential, with no sufficient
evidence to reduce the stochastic model to a bulk description.

1. Introduction

Reactions in nanosystems exhibit interesting dynamics quite different from those in the bulk.
Besides the cage effect, occupancy statistics becomes important. Since the average number of
reactants per nanosystem is typically small and comparable to a fluctuation, a bulk description
of the kinetics in terms of average densities is generally inappropriate and one has to deal
with the evolution of a discrete distribution of reactants. A general stochastic formulation
for microheterogeneous kinetics was developed in the 1960s [1]. Since then, it has proven
itself successful at describing the reaction kinetics in a variety of systems, such as micellar
assemblies [2], semiconducting nanotubes [3–5] and nanoparticles [6, 7], and conjugated
polymers [8, 9]. In this paper, we focus on the stochastic modelling of charge carrier dynamics
in isolated single-walled carbon nanotubes as well as in semiconductor nanoparticles. We
discuss different models of the elementary excitations and show how the stochastic approach
can provide additional evidence to distinguish between them.

Since the recent discovery of band-gap fluorescence from individual semiconducting
single-walled nanotubes (SWNTs) [10], there has been considerable interest in understand-
ing the optical spectra, ultrafast excitation dynamics, and related photophysical mecha-
nisms [3, 5, 11–19] due to their fundamental importance and relevance to many of the potential
applications. Two theoretical approaches have been used, in accord with the two possibilities
for the nature of the elementary excitations. In the first approach, the electrons and holes are
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treated as independent, uncorrelated quasiparticles [11, 14]. The alternative approach assumes
that the Coulombically bound electron and hole form a stable neutral exciton [3, 5, 13, 15–19].
Increasing theoretical [20–22] and experimental evidence [3, 5, 15–19] has been gathered re-
cently in favour of the excitonic formulation. In particular, the exciton binding energy in
SWNTs has been measured [16, 19] to be ∼0.4 eV, which is also in agreement with theoretical
estimations [20, 22]. The obtained exciton binding energy constitutes a substantial fraction of
the gap energy (∼1.3 eV) and exceeds the thermal energy at room temperature. This large
binding energy is largely due to spatial confinement. In contrast, bulk exciton binding ener-
gies typically lie in the range of several millielectronvolts, and thus excitonic effects in bulk
materials can usually be neglected.

Time-resolved fluorescence and pump–probe absorption studies have shown [3, 5, 11–19]
that after photoexcitation of the second van Hove singularity, the primary excitonic relaxation
to the fundamental band edge occurs within 0.1 ps. The fluorescence decay from this band
takes place on a timescale of ∼10 ps, mainly due to a non-radiative relaxation, identified
as trapping at defects. The radiative lifetime is much longer, ∼100 ns [15]. A rapid decay
component on a timescale of ∼1 ps emerges at high excitation intensities as a result of exciton–
exciton annihilation via the Auger mechanism [3]. Analysis of the decay kinetics in SWNTs
on the basis of the conventional bimolecular reaction theory led Ma et al to rule out one-
dimensional diffusion of excitons as a limiting step of their annihilation [17]. Instead, they
have demonstrated [5, 17–19] that both the fluorescence and the optical bleaching signal decays
measured at different excitation intensities can be satisfactorily described by a simple rate
equation

d

d t
n̄(t) = −γ n̄(t) − 1

2
γAn̄2(t), (1)

formally corresponding to bulk exciton annihilation in the absence of any geometric restriction.
Here n̄(t) is the average number density of excitons, and γ and γA are the rate constants for
linear relaxation (trapping) and annihilation, respectively. Note that the large Bohr radius
of excitons in comparison to the nanotube diameter makes SWNTs strictly one-dimensional
structures in terms of exciton migration. If the reaction were limited by exciton diffusion in one
dimension, the rate constant for nonlinear relaxation would be time dependent (proportional to
t−1/2), which is not observed experimentally [5, 17]. A possible explanation is the coherent
character of the exciton states in SWNTs [5].

Wang et al noticed [3] that even at the highest experimental pump fluences only a few
electron–hole (e–h) pairs per nanotube are actually excited and, therefore, a bulk description of
a nanotube ensemble in terms of an average carrier density may be inappropriate. Instead,
the quantized character of the number of excitations in a given nanotube must be taken
into account. This approach leads to a master equation for the time-dependent probability
distribution function which can be solved analytically [4]. The stochastic model (discussed in
detail below) found good quantitative agreement with the experimentally observed fluorescence
decay kinetics [3]. Now, how does this finding correlate with equation (1)? Valkunas et al [5]
have recently discussed the physical background of the stochastic model, and they came to
the conclusion that the exciton states in semiconducting nanotubes are coherent, similar to the
situation in molecular chromophore complexes [23]. The multiexciton manifolds are resonantly
coupled with other excited states, which decay by subsequent linear relaxation due to electron–
phonon coupling. It was shown [5] that equation (1) can be derived from the stochastic model
under the assumption of Poissonian distribution of excitons at all times. One of our goals is to
test the validity of this assumption.

Exciton–exciton annihilation is also important in the excitation kinetics of other nanoscale
semiconducting systems, such as quantum rods and wires [24]. However, further reduction
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of dimensionality in quantum dots is argued to lead to a change in the physical nature of
the elementary excitations [6, 7]. The arguments are as follows. In sub-10 nm quantum
dots, the confinement energies are significantly greater than the excitonic interactions and,
therefore, electrons and holes can be treated as uncorrelated particles. In this case, Auger
recombination may be described in terms of a three-particle process [25], as was done for CdSe
nanocrystals [6]. The analysis was based on a comparison of the discrete relaxation times
characteristic of the multiple e–h pair states, extracted from the transient absorption data. As we
will see below, this identification is not at all straightforward. By comparing a stochastic model
corresponding to uncorrelated carriers versus the exciton model we come to the conclusion that
experimental data actually support the excitonic mechanism.

2. Stochastic model of exciton relaxation in nanotubes

The excited e–h population in an isolated nanotube decays along two main channels [3]:
linearly, by trapping at defects with the rate constant γ , and nonlinearly, by Auger
recombination with the rate constant γA. Here both γ and γA are first-order rate constants.
Their typical experimental values are 1011 and 1012 s−1, respectively [3]. The contribution
of the radiative decay is negligible. The nonlinear channel results from the interaction of
multiple excitons, producing annihilation via resonant population of the coupled manifold of
electronic excitations in the system [5]. Since the relaxation from all higher excited states
to the energetically lowest excitonic state is very fast (<0.1 ps) [17–19], the kinetics can be
formulated schematically in terms of the probabilities ρn(t) that the system contains n excitons.
Assuming instantaneous generation, one can write the following master equation for ρn(t):

d

d t
ρn(t) = −(γ + 1

2 (n − 1)γA)nρn(t) + (γ + 1
2 nγA)(n + 1)ρn+1(t). (2)

The master equation (2) contains no spatial dependence of the probability density. As in
standard stochastic models of reaction kinetics in finite systems [1, 2], the effect of spatial
motion, if any, is factored into the corresponding first-order rate constant γA.

Experimental observables are proportional to the average number of excitons per nanotube,

n̄(t) =
∞∑

n=1

nρn(t). (3)

By substituting equation (3) into (2) we obtain [5]

d

d t
n̄(t) = −γ n̄(t) − 1

2
γAn(n − 1). (4)

Equation (4) reduces to equation (1) only if n(n − 1) = n̄2, which holds for the Poisson
distribution. When multiple excitons are generated by high-intensity pump pulses via the
traditional process of absorption of multiple photons, initial exciton populations in SWNTs
(right after the pulse) indeed exhibit a Poisson distribution [7],

ρn(0) = n̄n
0

n! exp(−n̄0), (5)

where the initial average occupancy number is given by the product of the nanotube absorption
cross section at the pump wavelength and the number of photons per unit area in the pulse,
n̄0 ≡ n̄(0) = σφ. However, Poissonian statistics is violated in time. This is particularly true at
long times, when the nonlinear relaxation stage is over. All nanotubes with initially at least one
exciton will contain exactly one exciton, while the fraction of initially empty nanotubes will
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remain basically unchanged (assuming timescale separation of linear and nonlinear relaxation
which holds for SWNTs). This is not a Poisson distribution. As a result, the exciton decay
predicted by the stochastic model of equation (2) becomes functionally different from that
predicted by the ‘bulk’ equation (1). Indeed, we obtain from equation (2), at long times,

n̄(t) � n̄∞ exp(−γ t), (6)

where n̄∞ � 1 − exp(−n̄0) is approximately the fraction of nanotubes initially containing at
least one exciton. On the other hand, equation (1) leads to

n̄(t) � n̄0 exp(−γ t)
[
1 + 1

2γAn̄0t
]−1

, (7)

i.e., an inverse linear decay modulated by a slow exponential1. We may conclude from this
simple analysis that the ‘bulk’ formulation makes sense only at short times.

Rigorous analysis requires solution of the master equation. This can be done by
introducing the moment generating function [1]

F(s, t) =
∞∑

n=0

snρn(t), (8)

and thus reducing the system of equations (2) to a partial differential equation

∂

∂ t
F(s, t) = 1

2γAs(1 − s)
∂2

∂s2
F(s, t) + γ (1 − s)

∂

∂s
F(s, t), (9)

with a general solution

F(s, t) =
∞∑

i=0

Ai

r + i − 1
P(−1,r−1)

i (2s − 1) e−λi t , (10)

where

λi = iγ + 1
2 i(i − 1)γA, (11)

r = 2γ /γA, and P(α,β)

i (x) are the Jacobi polynomials orthogonal on x ∈ [−1, 1]. The
coefficients Ai are determined from the initial condition. We obtain [4] for the Poisson
distribution (5),

Ai = n̄i
0 e−n̄0 (r + 2i − 1)

∞∑

j=0

n̄ j
0

j !

(r + i + j)


(r + 2i + j)
. (12)

Knowing the generating function, one can recover the whole time-dependent exciton
distribution ρn(t) in a standard way [1]. Experimental observables are related to the average,

n̄(t) = ∂

∂s
F(s, t)

∣∣∣∣
s=1

=
∞∑

i=1

Ai e−λi t . (13)

In order to test the validity of the arguments leading to equation (1) we also need

n(n − 1) = ∂2

∂s2
F(s, t)

∣∣∣∣
s=1

=
∞∑

i=1

Ai (i − 1)(r + i) e−λi t . (14)

We can see that the slowest relaxation rate for n̄(t) is λ1 = γ , while for n(n − 1) it is
λ2 � γA � γ , and hence one cannot expect the condition n(n − 1) = n̄2 to hold at all
times, even approximately. Figure 1 shows the plot of n(n − 1)/n̄2 as a function of time. This

1 Equation (7) assumes timescale separation, i.e., γ � γA , typically observed in experiment (e.g., γ/γA � 0.1 was
obtained by Wang et al [3]). The exact solution to equation (1) is given by n̄(t) = n̄0 exp(−γ t){1 + 1

2
γA
γ

n̄0[1 −
exp(−γ t)]}−1.
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Figure 1. Time dependence of σ = n(n − 1)/n̄2 for the Poissonian initial condition with n̄0 = 5
and γ/γA = 0.05, based on the stochastic model of equations (11)–(14).

Figure 2. Plot of the inverse average exciton population as a function of time for the Poissonian
initial condition with n̄0 = 5 and γ/γA = 0.05, based on the stochastic model (equations (11)–(13),
solid) and the bulk model (equation (7), dashed).

ratio has to be unity for equation (1) to be a valid approximation of the discrete stochastic
formulation. Further, in figure 2, we compare the kinetics predicted by the stochastic model,
equation (13), versus the ‘bulk’ kinetics based on the average number density, equation (7).
The linear time dependence of the inverse average number of excitons is supported by the
stochastic model only at very short times, γAt � 1, for a typical initial value of n̄0 = 5. Thus
for SWNTs, where even at the highest experimental excitation intensities only a few excitons
per nanotube are formed, the bulk treatment of the relaxation kinetics is acceptable with a great
reserve only at short times. Note that if we carefully inspect the experimental data of Ma et al
[5, 17–19], we will observe a considerable downward curvature in the time dependence of the
inverse average exciton population at long times, consistent with expectations of the discrete
stochastic model. Characteristic features of the stochastic model solution have been discussed
in detail elsewhere [4]. They include multimode relaxation and saturation of the long-time
decay amplitude at elevated excitation densities, all observed in experiment [3].
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3. Excitonic versus free carrier relaxation in nanoparticles

Intuitively, as long as one-dimensional diffusion in SWNTs plays no significant role, no
principal variation in the carrier relaxation dynamics is to be expected upon change from
nanotubes to quantum dots (QDs). However, the analysis by Klimov et al of their experimental
data on charge carrier relaxation dynamics in QDs seems to be confused. As shown below,
they mixed a bulk approach with a stochastic approach. The decay kinetics of e–h pairs
was first analysed within a bulk semiconductor approach by introducing an effective carrier
concentration in the dot (ceh = n/V0, where n is the number of e–h pairs per QD and V0 is the
QD volume) [6]. The decay rate was assumed to be proportional to the cubic concentration [25],

d

d t
ceh(t) = −kAc3

eh(t), (15)

where kA is the Auger constant. The number of e–h pairs per QD is actually distributed. In the
above equation ceh actually stands for the average carrier concentration. If the system is very
large, like a bulk semiconductor, the number of e–h pairs is very large and fluctuations in the
number of e–h pairs are much smaller compared with the average number. In this situation, one
can use the bulk approach, equation (15), which describes the decay kinetics of e–h pairs in
terms of the average carrier concentration. In QDs, however, the number of e–h pairs per dot is
very small and fluctuations in the number of e–h pairs are comparable with the average number.
In this situation, the decay kinetics cannot be described by the bulk approach. Instead, one has
to use a stochastic approach which properly takes into account the distribution of e–h pairs in a
QD. In addition, as shown below, the physical model underlying equation (15) is not consistent
with the experimental results, even if an appropriate stochastic approach is used instead of the
bulk approach.

If we denote the rate constant for the transition from n e–h pairs to n − 1 pairs by 1/τn, in
a generalized stochastic model the decay kinetics of e–h pairs is described by

d

d t
ρn(t) = −ρn(t)

τn
+ ρn+1(t)

τn+1
, (16)

where ρn(t) is a fraction of QDs which contain n e–h pairs at time t . Klimov et al [6] analysed
the decay kinetics of e–h pairs in 2.3 nm cadmium selenide (CdSe) colloidal QDs and obtained
the following values for τn :

τ1 = 510 ps, τ2 = 45 ps, τ3 = 21 ps, τ4 = 10 ps. (17)

In the case of n = 1 there is only one e–h pair in the dot, and Auger recombination does not
occur. So τ1 should correspond not to Auger recombination but to linear relaxation. The linear
relaxation should be operative not only in the single e–h pair case but also in multiple e–h pair
cases. Therefore, the rate constant 1/τn should be given by the sum of the rate constants kA

n for
the Auger recombination and k ′

n for the linear relaxation,

1

τn
= kA

n + k ′
n (n > 1). (18)

The latter is given by

k ′
n = nk ′

1 = n/τ1, (19)

where k ′
1 = 1/τ1 is the first-order rate constant for non-radiative linear relaxation in a quantum

dot which contains one e–h pair. We have from equations (17)–(19),

kA
2 :kA

3 :kA
4 = 1:2.3:5.1. (20)
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Two models are conceivable for the dependence of kA
n on n. In the first model we assume

that in QDs an electron and a hole are paired as an exciton and the Auger recombination occurs
between two excitons, as in SWNTs. In this case, kA

n is proportional to the number of ways of
choosing two excitons from n excitons,

kA
n = 1

2 n(n − 1)kA
ex, (21)

where kA
ex is the first-order rate constant for Auger recombination in a QD which contains

two excitons. The subscript ‘ex’ refers to the excitonic mechanism. The kA
n calculated from

equation (21) have the following ratios:

kA
2 :kA

3 :kA
4 = 1:3:6. (22)

In the second model we assume that in QDs an electron and a hole are not paired and Auger
recombination occurs between two electrons and one hole (or one electron and two holes) which
are mutually independent. In this case, kA

n is proportional to the number of ways of choosing
two electrons from n electrons and one hole from n holes,

kA
n = 1

2 n2(n − 1)kA
eh, (23)

where kA
eh is the first-order rate constant for Auger recombination in a QD which contains two

pairs of mutually independent electrons and holes. The subscript ‘eh’ refers to uncorrelated
e–h pairs. The kA

n calculated from equation (23) have the following ratios:

kA
2 :kA

3 :kA
4 = 1:4.5:12. (24)

Comparison of equation (20) with equations (22) and (24) shows that the exciton model
explains the experimental results much better than the free carrier model. Equations (20)
and (22) coincide within the reported experimental accuracy of 20%.

It is interesting to compare the analysis of Klimov et al with the present one. In their
analysis, the ratios of 1/τn are compared with those of n2 which they claim is derived from
equation (15). On the other hand, in the present analysis the ratios of the experimentally
derived kA

n , equation (20), are compared with those of n(n − 1) or n2(n − 1) which come
from equations (21) or (23). First, in their analysis the effect of linear relaxation was not
taken into account. Second, the experimentally derived kA

n is the rate constant in the stochastic
approach and it cannot be compared with equation (15) which is based on the bulk approach.
ceh in equation (15) refers not to an individual but to an average number of e–h pairs, and
equation (15) is valid only for very large average numbers. On the other hand, the average
number of e–h pairs in a QD is actually very small (only a few).

Now we discuss the dependence of kA
ex on the dot volume V0. Klimov et al found that

kA
ex is inversely proportional to V0. On the other hand, simple calculations based on classical

mechanics show [26] that the first-order recombination rate constant for two particles confined
in the volume V0 is inversely proportional to V0. The experimental results seem to be explained
by these simple calculations, although this may be fortuitous. Quantum mechanical calculations
of the Auger recombination rate constant for two excitons in a QD as a function of the dot
volume are highly needed.

When the rate constants kA
n for the Auger recombination and k ′

n for the linear relaxation are
given by equations (21) and (19), respectively, equation (16) can be solved analytically by using
the generating function technique, as discussed in the preceding section. The experimentally
important average number of excitons per QD is given by the following equation:

n̄(t) =
∞∑

i=1

Ai exp

[
−i

(
1

τ1
+ 1

2
(i − 1)kA

ex

)
t

]
, (25)
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where the initial distribution of excitons in the QD is assumed to be Poissonian with the average
n̄0 and thus the coefficients Ai are given by equation (12). Equation (25) can be used to analyse
the carrier relaxation dynamics in QDs instead of the method used by Klimov et al.

Finally, we discuss the relation between the bulk approach and the stochastic approach
for free charge carriers. The physical model which is described by equation (15) in the bulk
approach corresponds to the following master equation in the stochastic approach:

d

d t
ρn(t) = −1

2
n2(n − 1)kA

ehρn(t) + 1

2
(n + 1)2nkA

ehρn+1(t). (26)

This model is equivalent to equation (16) with kA
n given by equation (23) and k ′

n = 0
irrespective of n. When the average number of e–h pairs is very large, we can derive
equation (15) by substituting equation (3) into (26),

d

d t
n̄(t) = −1

2
kA

eh〈n2(n − 1)〉 ≈ −1

2
kA

ehn̄3, (27)

and identifying ceh with n̄ and

kA = 1
2 kA

eh. (28)

Note that the approximate equality in equation (27) is valid only in the limit of n̄ � 1; that is,
for bulk systems.

We have already pointed out that equation (26), which corresponds to the free carrier
model, does not explain the experimental results for QDs satisfactorily. Therefore,
equation (15) is not appropriate for the description of the Auger recombination in QDs in
two ways. First, equation (15) is based on the bulk approach while the stochastic approach
should be used for QDs, since the average number of e–h pairs per QD is very small. Second,
equation (15) assumes the free carrier model while the exciton model explains the experimental
results better. In other words, the stochastic exciton model and its exact solution should apply
equally well to carrier relaxation dynamics in SWNTs and QDs.

4. Conclusions

We have discussed implications of the stochastic model of excitation dynamics in nanosystems,
which has been under recent active debate in the context of charge carrier relaxation in
isolated single-walled carbon nanotubes and semiconductor nanocrystals. Analysis of available
experimental data leads us to conclude that the elementary excitations in all these systems are
excitons. The quantized character of the number of excitons in nanosystems is essential. A bulk
description of the relaxation kinetics in terms of the average exciton density is inappropriate
and not at all necessary because the discrete stochastic model itself admits a simple analytical
solution.
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